

DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics Subject : 060090703 Advanced Numerical Analysis

Academic Year : 2019 - 20

Teaching Schedule

Course Objectives: To provide students with the specialist knowledge in advanced numerical analysis. To understand analytical, Developmental and technical principles that relate to numerical methods for solving partial differential equations. Formulate the real practices problem in the form of partial differential equations and implement appropriate numerical methods for solving them.

Course outcomes: Upon completion of the course, students shall be able to

- **CO1:** understand the fundamental characteristics of partial differential equations and their solutions by numerical analysis.
- **CO2:** analyse finite difference approximations of elliptic partial differential equations.
- **CO3:** derive the solution of one dimensional heat partial differential equation using different explicit and implicit numerical approaches.
- **CO4:** get the numerical solution of one dimensional wave equation.
- **CO5:** solve the first-order and second order hyperbolic partial differential equation using numerical methods.
- **CO6:** formulate the various science and engineering problem into mathematical form and get its numerical solution using finite element approximation.

Unit	Sub Unit	No. of Lect.(s)	Topics	Reference Chapter/ Additional Reading	Teaching Methodology to be used	Active Learning Activities	Evaluation Parameter
Unit 1	: Nume	rical Solut	tion of Partial Differential Equation				
	1.1	2	Definitions and Terminology		Chalk & Talk	For Slow Learner:	Unit Test-1 Assignment-1
[12]	1.2	2	Classification of Partial Differential Equations	CH#17		At the completion of each numerical method students implement the	
	1.3	2	Some Standard Partial Differential Equations	Numerical Methods: Principles, Analysis		method to solve similar problems. For Active Learner:	
	1.4	3	Methodology to solve Partial Differential Equations	and Algorithms Srimanta Pal		After the completion of every numerical method students find the	
	1.5	3	Solution of Elliptic PDE			real phenomenon problem and solved using that method.	
Unit 2	: Nume	rical Solut	ion of Parabolic Partial Differentia				
[11]	2.1 2.2	<u>1</u> 2	Introduction to Parabolic PDE One dimensional Heat Equation	CH#18	Chalk & Talk	For Slow Learner:	Unit Test-1&2 Assignment-2

DEPARTMENT OF MATHEMATICS

Semeste	er : VII			Integrated M.Sc. Math	ematics	Academic Ye	Academic Year : 2019 -20	
Subject : 060090703 Advanced Numerical Analysis								
	2.3	2	Explicit Method	Numerical Methods: Principles, Analysis		At the completion of each numerical method students implement the		
	2.4	2	Implicit Method	Srimanta Pal		method to solve similar problems. For Active Learner:		
	2.5	1	Unified Explicit and Implicit Scheme			After the completion of every numerical method students find the		
	2.6	1	Iterative Methods			real phenomenon problem and solved		
	2.7	1	Improves Partial Accuracy			using that method.		
	2.8	1	Generalization			using that method.		
Unit 3: Numerical Solution of Hyperbolic Partial Differential Equations								
[12]	3.1	1	Introduction to Hyperbolic PDE		Chalk & Talk	For Slow Learner: At the completion of each numerical method students implement the method to solve similar problems. For Active Learner: After the completion of every numerical method students find the real phenomenon problem and solved using that method.	Unit Test-2 Assignment-3	
	3.2	2	Derivation of Wave Equation	011//4.0				
	3.3	3	Simple Finite Difference Methods	CH#19 Numerical Methods: Principles, Analysis				
	3.4	3	Second Order Hyperbolic Equations					
	3.5	3	Method of Characteristics for Hyperbolic PDE	and Algorithms Srimanta Pal				
Unit 4	Unit 4: The Finite Element Method							
[10]	4.1	1	Introduction to Finite Element Approximation		Chalk & Talk	For Slow Learner: At the completion of each numerical method students implement the method to solve similar problems. For Active Learner: After the completion of every	Internal Examination Assignment-4	
	4.2	1	Functional	CH#11				
	4.3	2	Base Functions	Introductory Methods of Numerical Analysis				
	4.4	2	Rayleigh-Ritz Method					
	4.5	2	Galerkin Method					
	4.6	2	Finite Element Method for One- dimensional Problems	S. S. Sastry		numerical method students find the real phenomenon problem and solved using that method.		

DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics Subject: 060090703 Advanced Numerical Analysis Academic Year: 2019-20

Text book:

1. Srimanta Pal, "Numerical Methods: Principles, Analysis and Algorithms", Oxford University Press, 2009. (Printed in India by Radha Press, Delhi 110031)

Reference books:

- 1. S. S. Sastry, "Introductory Methods of Numerical Analysis" PHI learning private Ltd.
- 2. Leon Lapidus, George F. Pinder, "Numerical Solution of Partial Differential Equations in Science and Engineering", A Wiley-Inter science Publication (John Wiley & Sons, Inc.) 1999.
- 3. Prasad Phoolan, Ravindran, Renuka, "Partial Differential Equations", New Age International Publication, New Delhi, 2009.

Course Objectives and Course Outcomes Mapping:

- To provide students with the specialist knowledge in advanced Numerical Analysis: CO1, CO3, CO4, CO5 •
- To understand analytical, developmental and technical principles that relate to Numerical methods for solving partial differential equations: CO2, CO3, CO4, CO5
- Formulate the real practices problem in the form of partial differential equations and implement appropriate numerical methods for solving them: CO1, • C06

Course Outcomes Unit No. Unit **CO2 CO3** CO5 **CO1 CO4 CO6** Numerical Solution of Partial 1 \checkmark \checkmark **Differential Equations** 2 Numerical Solution of Parabolic \checkmark \checkmark **Partial Differential Equations** 3 **Numerical Solution of Hyperbolic** \checkmark \checkmark **Partial Differential Equations The Finite Element Method** \checkmark \checkmark 4

Course Units and Course Outcomes Mapping:

 \checkmark

 \checkmark

DEPARTMENT OF MATHEMATICS

Semester : VII

Integrated M.Sc. Mathematics Subject : 060090703 Advanced Numerical Analysis Academic Year : 2019 - 20

Programme Outcomes (PO)

PO1: Knowledge

Provides knowledge about the fundamentals of pure, applied and computing mathematics and its applications to students that creates the opportunities in industries and research centers.

PO2: Core Competence

Creates competency in science and mathematics to formulate, analyses and solve problem and/or also to pursue advanced study or research.

PO3: Breadth

Trains students having good knowledge in unearth core of academia and industry by the roots of mathematics.

PO4: Evaluation

Imparts in students to raise trial and error-based curiosity and problem-solving functionality with research based advanced tutorial for higher level decision makings tools.

Programme Outcomes and Course Outcomes Mapping:

Programme Outcomes	Course Outcomes						
	CO1	CO2	CO3	CO4	CO5	CO6	
P01	\checkmark			\checkmark			
P02		✓	~	✓			
P03			√		\checkmark	√	
P04					\checkmark	\checkmark	

